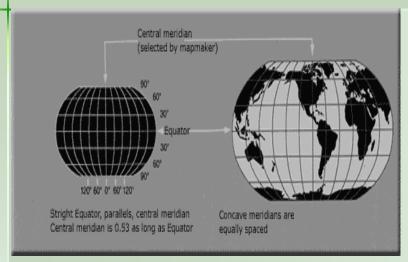
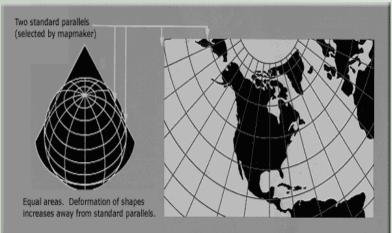

TYPES OF MAPS

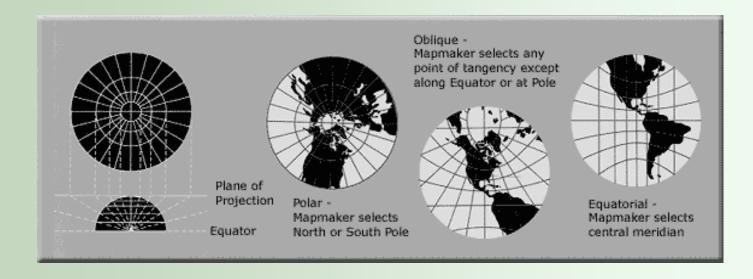

Globes


- -most accurate model
- -cannot show small details
- Mercator Projection
 - -Earth on a grid
 - -used to show directions between objects

TYPES OF MAPS (CONT'D)

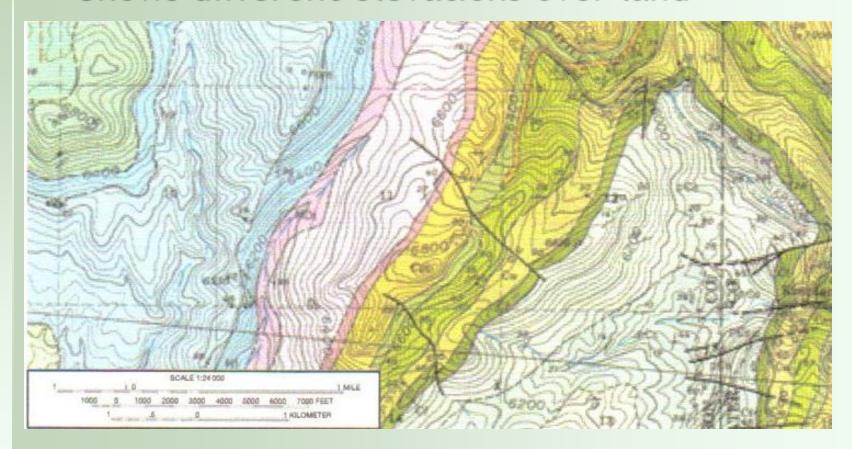
-Robinson Projection

-show shapes and sizes accurately (except around the edges)


■Conic Projection

- -accurate at the lines of latitude
- -distorted in between the lines
- -used for street maps

TYPES OF MAPS (CONT'D)


Gnonomic Projection

- -show the Poles
- -distances and directions are distorted
- -best to show the shortest distance between 2 points

TOPOGRAPHIC MAPS

Shows different elevations over land

TOPOGRAPHIC MAPS

- Contour lines show the differences in elevation.
- Contour interval shows the change in height.
- Contour lines will never touch or cross
- Can be combined with geologic maps (show the type, age, and shape of various rock formations).

READING TOPOGRAPHIC MAPS

- Circles = hill, mountain, etc.
- Circles with hachure marks = depression
- Coloring = different rock types
- Distance between lines →
 - Far apart = gentle slopes
 - Close together = steep slopes
- Scale → a certain distance on the map is equal to a certain distance in real life

NEW TECHNOLOGIES

Type of Equipment	Table 1 Technology and Earth Science Capabilities
type or Equipment	Capabilities
Weather Satelllites	 These monitor atmospheric temperature and humidity, ground and surface
	seawater temperature, cloud cover, and water-ice boundaries.
	They can help locate sources of distress signals.
	 They are able to scan Earth's surface in one 24-hour period.
Navigation Satellites	 These assist ships and submarines to determine their exact location at any time.
Landsat Satellites	The first Landsat satellite was launched in 1972. Landsat 7 was launched in 1999.
	 They provide data on Earth's landmasses, coastal boundaries, and coral reefs.
	 Pictures taken are transmitted to ground stations around the world.
	 They orbit Earth every 99 minutes and complete 14 orbits per day.
	Total coverage of Earth is achieved in 16 days.
Global Positioning	 This system combines satellite information with computer technology to provide
System (GPS)	location information in three dimensions: latitude, longitude, and altitude.
	 Three satellite signals are detected by a receiver. The distance from the satellites to the
	receiver is calculated, and the location is determined using the triangulation method.
	A fourth signal is then used to mathematically determine exact position.
Very Long Baseline Interferometry (VLBI)	 VLBI utilizes a large network of antennas around the world to receive radio waves from space objects such as quasars.
	 In Earth science, VLBI is used in geodesy, or the measurement of the geosphere.
	 Using the arrival times of radio waves from quasars, the position of radio
	telescopes on Earth are determined to within millimeters of their position.
	 Small changes in the telescope positions allow scientists to study tectonic plate motions and other movements of Earth's crust with great precision and accuracy.

ASSIGNMENT

Activity: Topographical Maps Worksheet

